

International Journal of Engineering Research& Management Technology

January-2019 Volume 6, Issue-1

Email: editor@ijermt.org

www.ijermt.org

ISSN: 2348-4039

EFFECT OF SULPHUR DIOXIDE ON PLANT CHLOROPHYLL ON THE FAMILY OF BRASSICACEAE

Uma Pal

Research Scholar, Department of Botany, Glocal University, Sahranpur, U.P.

Salma Praveen and Mohd. Gulfishan

Department of Botany, Glocal University, Sahranpur, U.P.

ABSTRACT

The effect of SO_2 on chlorophyll in (*Brassica juncea [L.] Czern.and Coss.cv.Pusa Bold; Raphanus sativus L.cv. Mino Early Long White*). In exposed seedlings SO_2 concentration ranging (653, 1306, 2612&3918 $\mu g \, m^{-3} \, SO_2$), resulted in a sharp decrease in total chlorophyll content. Both chlorophyll a and chlorophyll b got reduced and declined following the exposure of SO_2 . This decrease could be due to disturbance in chloroplast ultra structure and because of conversion of chlorophyll into phaeophytin upon exposure to SO_2 . After spraying of calcium hydroxide the yield in $C+SO_2$ exposed set was higher than the set of plant exposed to SO_2 alone. Maximum reductions were noticed at 3918 $\mu g \, m^{-3}$ of SO_2 . The breakdown of chlorophyll molecules by SO_2 as measured by loss of Mg^{++} and total chlorophyll.

INTRODUCTION

Sulphur dioxide is one of the major air pollutants in industrialized areas that can damage vegetation. The process of photosynthesis appears to be mainly affected. A current view is that plant must exhibit visible symptoms for injury to exist. Many studies have tried to establish certain relationship between visible symptoms caused by exposure to SO₂ and injury. However several glasshouse exposure studies (Bogorad L 1966; Reinert RA and JS Sanders, 1982) have shown a net reduction of growth and yield without the development of visual symptoms. The present study was initiated to determine if low concentration of SO₂ have any effect on the process of photosynthesis without producing visual symptoms.

The effect of SO_2 was studied on the following aspects of pigment metabolism: (a) Effect on chlorophyll conversion into phaeophytin,(b)Effect on the activity of chlorophyllase and (c) Effect of low cytoplasmic pH caused by SO_2 on (a) and (b)

Growth Conditions

Plants from the family Brassicaceae (*Brassica juncea* (*L.*) *Czern.and Coss.cv.Pusa Bold; Raphanus sativus L.cv.Mino Early Long White*) seeds were washed with sterile distilled water and then treated with 0.1% mercuric chloride for 5 minutes and finally washed with sterile distilled water for 15 minutes. Surface sterilized seeds were allowed to imbibe water for 6 hrs.and thereafter sown on petriplates lined with cotton over which Whatman no.40 filter paper was placed. Seeds were placed on filter paper. For each variety, five sets each

Email:editor@ijermt.org

January-2019 Volume 6, Issue-1

www.ijermt.org

ISSN: 2348-4039

having 150 seeds were maintained. Then seeds were sown in polythene bags/earthen ware containing garden soil. The soil was sandy loam and homogenously mixed with farmyard manure. All experiment will carried out in a fumigation chamber (1m*1m*1m) made of iron rods. Each chamber was portable and covered with transparent polythene sheets. Then Plants were exposed to SO₂ from 5th day onwards. Plants of each species were divided into five sets. Out of five four sets were exposed to four different concentration of Sulphur dioxide (653, 1306, 2612, 3918 µg m⁻³) while the fifth one was used as control.

Sulphur dioxide Treatment

Sulphur dioxide was prepared by allowing a reaction of dilute sulphuric acid ($10\% H_2SO_4$) and sodium sulphite (NA_2SO_3) under controlled condition of temperature and humidity. Complete reaction of $1M NA_2SO_3$ with $10\% H_2SO_4$ produces $1M SO_2$ or 126 mg of NA_2SO_3 yields $64 mg SO_2$.

The chemical reaction for SO₂ preparation is as follows-

$$NA_2SO_3 + H_2SO_4$$
 $SO_2 \uparrow + NA_2SO_4 + H_2O$ (126 mg) (64 mg)

Hence, 1.968 of NA_2SO_3 is required to produce 1 mg ($1000 \mu g m^{-3}$) of sulphur dioxide. Therefore, on the basis of this equation 1.285, 2.571, 5.142, 7.713 mg of NA_2SO_3 were used to obtain 653, 1306, 2612, $3918 \mu g m^{-3}$ of sulphur dioxide,respectively,inside the exposure system. The plants were given the treatment of SO_2 on alternate day for 2 hrs.

Calcium hydroxide treatment

Calcium hydroxide (0.5% aqueous solution) was used for amelioration studies. Results of germination studies showed that lower concentration of sulphur dioxide (653 and 1306 μg m⁻³) did not cause any appreciable reduction. On the contrary, higher concentration (2612 and 3918 μg m⁻³) of sulphur dioxide proved to be highly toxic. Plants treated with 2612 and 3918 μg m⁻³ of SO₂ were selected for amelioration studies and calcium hydroxide was used as an ameliorating agent.

For ameliorating study set treated with 0.5% $Ca(OH)_2$, 0.5% $Ca(OH)_2+2612~\mu g~m^{-3}~SO_2$, 2612 $\mu g~m^{-3}~SO_2$, 0.5% $Ca(OH)_2+3918~\mu g~m^{-3}~SO_2$ and 3918 $\mu g~m^{-3}~SO_2$ were designated as $C,C+T_1$, $T_1,C+~T_2$ and T_2 sets, respectively. The calcium hydroxide solution was sprayed on sulphur dioxide (2612 $\mu g~m^{-3}$ and 3918 $\mu g~m^{-3}$ SO_2) treated plants once in a week with the help of a sprayer.

The study on both plants was carried out till maturity (90 d in *Brassica juncea* and 120 d in *Raphanus sativus*).the observations for various attributes were recorded in 15 d, 30 d, 45 d, 60 d, 75 d, 90 d old plants of *Brassica juncea* and *Raphanus sativus* respectively.

Chlorophyll Extraction & Determination

Chlorophyll content was estimated according to Arnon's (1949) method. Fresh leaves (100 mg) were homogenized with acetone (80%) and a pinch of sodium bicarbonate was added. The homogenate was

Email:editor@ijermt.org

January-2019 Volume 6, Issue-1

www.ijermt.org

ISSN: 2348-4039

centrifuged for 5 minutes and final volume of supernatant was made to 10 ml. by adding 80% acetone. The optical density (OD) of the extract was recorded at 645 nm and 663 nm on a spectrophotometer against a blank (80 % acetone).

The amount of chlorophyll a, chlorophyll b and total chlorophyll was calculated using the following formulae-

Chlorophyll a= $(12.7 \text{ A}_{663}\text{-}2.69 \text{ A}_{645}) * \text{V/W}*1000 (\text{mg g}^{-1} \text{ fresh weight})$

Chlorophyll b= $(22.9 \text{ A}_{645}\text{-}4.68 \text{ A}_{663}) * \text{V/W}*1000 (\text{mg g}^{-1} \text{ fresh weight})$

Total chlorophyll = $(8.02 \text{ A}_{663}\text{-}20.2 \text{ A}_{645}) * \text{V/W*}1000 (\text{mg g}^{-1} \text{ fresh weight})$

RESULT & DISSCUSION

Reduction in chlorophyll a and chlorophyll b content of treated seedlings in comparison to control ones was observed at higher SO₂ level.SO₂ also reduced the stability index of chlorophyll. Chlorophyll content was estimated to determine the effect of SO₂ on photosynthetic machinery of plants. Data analysis reveals that so₂ exposures cause significant loss of chlorophyll in both experimental crops. Amount of chlorophyll a, chlorophyll b &total chlorophyll increased rapidly first 30 days and then remained almost changed but thereafter a sharp decline was observed in all sets. Max reduction in chlorophyll a content was recorded at 3918 μg m⁻³ of SO₂ in 60 d old leaves. Maximum %decrease in chlorophyll a content was 33.67 in *Brassica juncea* and 58.33 in *Raphanus sativus*. On other hand maximum decline in chlorophyll b content was 28.24 and 39.73 %in *Brassica juncea* and *Raphanus sativus* respectively at 3918 μg m⁻³ of sulphur dioxide. Influence of SO₂ was also observed on stability index of chlorophyll. Stability index of chlorophyll in treated plant was lower in comparison to control one. Maximum reduction noticed at 3918 μg m⁻³ of SO₂

Table 3a: <u>Estimation of some biochemical components in leaves of *Brassica juncea* fumigated with different concentration of sulphur dioxide at 45 d and 60 d plant age.</u>

		45 d			60 d										
Attribute conce	ntration of s	ulphur diox	ide(μg m ⁻³)	CD	concen	tration of	sulphur d	lioxide(µg n	n ⁻³)	CD					
	0	653	1306	2612	3918	5%	1%	0	653	1306	2612	3918	5%	1%	
Chlorophyll a (mg g ⁻¹ f.wt.)	4.861	4.973	3.230**	3.440**	2.697**	1.193	1.275	4.086	4.166	2.877**	2.876**	2.669**	0.890	0.952	
(mg g i.wt.)	±0.358	±0.281	±0.272	±0.541	±0.1754	1.193	1.273	±0.283	±0.283	±0.302	±0.102	±0.046	0.890	0.93.	
Chlorophyll b	1.406	1.403	1.321	1.123	1.204	0.824	0.882	1.813	1.904	1.373**	1.323**	1.301**	0.382	0.407	
(mg g ⁻¹ f.wt.)	±0.056	±0.231	±0.125	±.025	±0.102			±0.099	±0.023	±0.178	±0.178	±0.043			
Stability index of chlorophyll	100.00	101.739	72.618	72.809	62.246			100.00	102.895	72.029	78.669	73.495			

Email:editor@ijermt.org

January-2019 Volume 6, Issue-1

www.ijermt.org

ISSN: 2348-4039

Table 3b: <u>Estimation of some biochemical components in leaves of *Raphanus sativus* fumigated with different concentration of sulphur dioxide at 45 d and 60 d plant age.</u>

Plant age(d)																	
		45 d				60 d											
Attribute concer	tration of s	ulphur dioxi	ide(µg m ⁻³)	CD	D concentration of sulphur dioxide(μg m ⁻³) CD												
	0	653	1306	2612	3918	5%	1%	0	653	1306	2612	3918	5%	1%			
Chlorophyll a																	
• •	1.121	0.983**	0.780**	0.681**	0.587**	0.000	0.120	0.948	0.864**	0.735**	0.526**	0.395**	0.020	0.002			
$(mg g^{-1} f.wt.)$	±0.022	±0.008	±0.037	±0.041	±0.013	0.098	0.120	±0.035	±0.032	±0.011	±0.038		0.028	0.083			
Chlorophyll b	±0.022	±0.008	±0.037	±0.041	±0.013			±0.033	±0.032	±0.011	±0.038	±0.020					
• •	0.354	0.353	0.390	0.238**	0.263**	0.090	0.108	0.307	0.286*	0.255**	0.186**	0.186**	0.010	0.052			
(mg g ⁻¹ f.wt.)	±0.005	±0.002	±0.029	±0.051	±0.005			±0.021	±0.014	±0.014	±0.011	±0.009					
Stability index of chlorophyll	100.00	89.843	82.882	62.058	57.653			100.00	91.669	79.384	57.044	46.582					

Tables show that Chlorophyll content of C+T1&C+T2 sets are higher than the T1&T2 sets respectively. On 60th day % increase in chlorophyll a content of C+T1 set was 36.50 in *Brassica juncea* and 32.09 in *Raphanus sativus*. Over their T1sets.the corresponding value for C+T2 sets were 27.32 &22.58 in *Brassica juncea* and *Raphanus sativus* respectively. Level of chlorophyll b also increased in C+ SO₂ set than set treated with SO₂ alone. The total chlorophyll contents of C+ SO₂ set were higher than those of SO₂ treated plants. The application of calcium hydroxide reduced the loss in chlorophyll stability.

Table 4a: Estimation of some biochemical components in leaves of *Brassica juncea* treated with SO₂ and calcium hydroxide at 15 d and 30 d plant age

Plant age(d)																			
15 d									30 d										
Attribute		Treatment				CD			Treatment			CD							
	Contro 1	С	C+T ₁	C+T ₂	T ₁	T ₂	5%	1%	Contr ol	С	C+T ₁	C+T ₂	T ₁	T ₂	5%	1%			
Chlorophyll a	1.336	1.453	1.460	1.266	1.054	1.073			3.055	2.562	2.755	2.349	2.468	1.738					
(mg g ⁻¹ f.wt.)							0.595	0.837							1.333	1.882			
	±0.294	±0.236	±0.225	±0.108	±0.124	±0.036	0.393	0.837	±0.315	±0.430	±0.101	±0.484	±0.467	±0.274					
Chlorophyll b	0.766	0.783	0.766	0.573	0.650	0.415			1.225	1.282	1.189	1.366	1.059	1.068	0.734	1.036			
(mg g ⁻¹ f.wt.)	0.700	0.763	0.700	0.575	0.050	0.413	0.564	0.796	1.223	1.202	1.107	1.300	1.037	1.000	0.734	1.030			
	±0.252	±0.222	±0.252	±0.093	±0.096	±0.087			±0.237	±0.318	±0.087	±0.225	±0.077	±0.205					

International Journal of Engineering Research & Management Technology

Email:editor@ijermt.org

January-2019 Volume 6, Issue-1

www.ijermt.org

ISSN: 2348-4039

chlorophyll 100.00 100.17 99.726 82.388 81.060 70.789 100.00 89.813 92.140 86.790 82.406 65	io	

Table 4b: <u>Estimation of some biochemical components in leaves of Raphanus sativus treated</u> with SO₂ and calcium hydroxide at 15 d and 30 d plant age

Plant age(d)																		
			15 d				30 d											
Attribute		Treatm	ent		CD			Treatment				CD						
	Contro l	С	C+T ₁	C+T ₂	T ₁	T ₂	5%	1%	Contr	С	C+T ₁	C+T ₂	T ₁	T ₂	5%	1%		
Chlorophyll a (mg g ⁻¹ f.wt.)	0.567	0.557	0.499	0.499	0.436*	0.404*			0.814	0.793	0.693**	0.642**	0.641*	0.562*	0.082	0.116		
	±0.005	±0.024	±0.049	±0.048	±0.007	±0.011	0.092	0.129	±0.003	±0.015	±0.035	±0.056	±0.008	±0.015				
Chlorophyll b (mg g ⁻¹ f.wt.)	0.134	0.125	0.105*	0.107*	0.108*	0.085*	0.026	0.036	0.201	0.233	0.221	0.189	0.157	0.139	0.094	0.133		
	±0.001	±0.014	±0.004	±0.061	±0.002	±0.005			±0.003	±0.032	±0.012	±0.045	±0.017	±0.013				
Stability index of chlorophyll	100.00	97.517	86.729	86.329	76.953	71.291			100.00	99.737	88.910	81.844	78.693	69.060				

Malhotra (1977) & Shimazaki *et.al.* (1980) reported that stress treatment either inhibits or increase its destruction. After treatment with SO₂, chlorophyll content of plants was positively affected at low conc.; same was found to be decreased at higher conc.

Chlorophyll Breakdown

In order to understand the mechanism of chlorophyll destruction, the effect of SO_2 on Mg^{++} loss from chlorophyll (conversion of chlorophyll into pheophytin) was determined. Having entered inside the leaves, SO_2 with the help of water forms sulphurous acid, which then dissociates into H^+ and HSO_3^- ions and causes degradation of chlorophyll. chlorophyll a is degraded to phaeophytin through replacement of Mg^{+2} ions present in chlorophyll molecules by free H^+ ions, while chlorophyll b forms chlorophyllide through the removal of phytol group of the molecule (Rao and LeBlanc,1966).however the phaeophytinization of chlorophyll caused by SO_2 occurs when the pH of outer solution is lower(Malhotra,1977). Acids such as hydrofluoric and hydrochloric acids have been shown to convert chlorophyll into pheophytin with the release of Mg^{++} (Rao and LeBlanc,1966). Mg^{++} is replaced by two molecules of hydrogen with a resulting change in the light absorption spectral properties of chlorophyll molecule.

Sulphur dioxide and Chlorophyll destruction

International Journal of Engineering Research & Management Technology

Email:editor@ijermt.org

January-2019 Volume 6, Issue-1

www.ijermt.org

ISSN: 2348-4039

SO₂ exposure resulted in simultaneous loss of both chlorophyll a &chlorophyll b. This implies that the loss of chlorophyll b was resultant upon inhibited biosynthesis of chlorophyll a (Bogorad, 1966). The decrease in chlorophyll content at higher concentration of SO₂ could be due to very low pH which seems to be very fatal as described by Gilbert (1968) and Grunwald (1981). Some other investigator reported that SO₂ is oxidized to SO₄⁻² through intermediary sulphite ions. Excess of Sulphite leads to break down of chlorophyll (Ricks&William, 1975). SO₂ may react with chlorophyll to form superoxide radicals (Shimazaki et al. 1980; William and Banerjee, 1995). These radicals cause wide spread damage to membrane and associated molecules including chlorophyll pigment (Peiser and Yang, 1978).

CONCLUSION

Both crops (*Brassica juncea & Raphanus sativus*) showed negative response to elevated SO₂ levels, the extend of response was different between both crops. Both plants adopted some protective strategies to fight against SO₂ pollution. Study reports that initial concentration of SO₂ (653 µg m⁻³) caused slight stimulation in growth of *Brassica juncea* thus *Brassica juncea* can tolerate or grow better up to a certain critical level of SO₂, the level which is higher than other crops. it was found that photosynthetic pigments were positively affected at low concentration in *Brassica juncea*, the same found to be decreased at higher concentration reduction in chlorophyll led to impairment of photosynthetic vis-a –vis reduction in growth and yield of plants. Chlorophyll degradation was found more in *Raphanus sativus* than in *Brassica juncea*. The present investigation led us to believe that calcium hydroxide acts as an antidote against SO₂ stress in two test crops *Brassica juncea* and *Raphanus sativus*. The yield improvement was better in *Brassica juncea* than that in *Raphanus sativus*, the reason behind this may be that *Raphanus sativus* is very sensitive to SO₂ pollution & is not able to recover from SO₂ stress. On other hand *Brassica juncea* being relatively resistant to SO₂ responded potentially to calcium hydroxide treatment and showed better growth than non sprayed plants.

REFERENCES

Arnon DI 1949. Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiol 24: 1 - 15.

Bogorad L 1966. The biosynthesis of chlorophyll. In *The Chlorophylls* (eds) LP Verson and GR Seely. Academic Press, New York USA.

Gilbert OL 1968. Bryophytes as indicators of air pollution in the Lyne valley. New Phytol 67: 15 - 30.

Grunwald C 1981. Foliar fatty acids and sterols of soybean fields fumigated with SO₂. Plant Physiol 68: 868 - 871.

Malhotra SS 1977. Effects of aqueous sulphur dioxide on chlorophyll destruction in *Pinus contorta*. *New Phytol* 78: 101 - 109.

International Journal of Engineering Research & Management Technology

Email:editor@ijermt.org

January-2019 Volume 6, Issue-1

www.ijermt.org

ISSN: 2348-4039

Peiser GD and SF Yang 1978. Chlorophyll distribution in the presence of bisulphite and linoleic acid hydroperoxide. *Phytochemistry* 17: 79 - 84.

Rao DN and F LeBlanc 1966. Effect of sulphur dioxide on lichen with special reference to chlorophyll. *Bryologist* 69: 69 - 72.

Reinert RA and JS Sanders 1982. Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulphur dioxide and ozone. *Plant Dis* 66: 122 - 124.

Ricks GR and RJH William 1975. Effects of atmospheric pollution on deciduous woodlands part III Effects on photosynthetic pigments of leaves of *Quercus petraea* Leib. *Environ Pollut* 8:97 - 106.

Shimazaki K and K Sugahara 1980. Inhibition site of the electron transport system in lettuce chloroplast by fumigation of leaves with SO₂. *Plant Cell Physiol* 21: 125 - 135.

Williams AJ and SK Banerjee 1995. Effect of thermal power plant emission on the metabolic activities of *Mangifera* indica and *Shorea robusta*. Environ Ecol 13: 914 - 919.